(1)——电机烧毁
电动机压缩机(以下简称压缩机)的故障可分为电机故障和机械故障(包括曲轴,连杆,活塞,阀片,缸盖垫等)。机械故障往往使电机超负荷运转甚至堵转,是电机损坏的主要原因之一。
电机的损坏主要表现为定子绕组绝缘层破坏(短路)和断路等。定子绕组损坏后很难及时被发现,终可能导致绕组烧毁。绕组烧毁后,掩盖了一些导致烧毁的现象或直接原因,使得事后分析和原因调查比较困难。
然而,电机的运转离不开正常的电源输入,合理的电机负荷,良好的散热和绕组漆包线绝缘层的保护。从这几方面入手,不难发现绕组烧毁的原因不外乎如下六种:(1)异常负荷和堵转;(2)金属屑引起的绕组短路;(3)接触器问题;(4)电源缺相和电压异常;(5)冷却不足;(6)用压缩机抽真空。实际上,多种因素共同促成的电机损坏更为常见。
1.异常负荷和堵转
电机负荷包括压缩气体所需负荷以及克服机械摩擦所需负荷。压比过大,或压差过大,会使压缩过程更为困难;而润滑失效引起的摩擦阻力增加,以及极端情况下的电机堵转,将大大增加电机负荷。
润滑失效,摩擦阻力增大,是负荷异常的首要原因。回液稀释润滑油,润滑油过热,润滑油焦化变质,以及缺油等都会破坏正常润滑,导致润滑失效。回液稀释润滑油,影响摩擦面正常油膜的形成,甚至冲刷掉原有油膜,增加摩擦和磨损。压缩机过热会引起使润滑油高温变稀甚至焦化,影响正常油膜的形成。系统回油不好,压缩机缺油,自然无法维持正常润滑。曲轴高速旋转,连杆活塞等高速运动,没有油膜保护的摩擦面会迅速升温,局部高温使润滑油迅速蒸发或焦化,使该部位润滑更加困难,数秒钟内可引起局部严重磨损。润滑失效,局部磨损,使曲轴转动需要更大力矩。小功率压缩机(如冰箱,家用空调压缩机)由于电机扭矩小,润滑失效后常出现堵转(电机无法转动)现象,并进入“堵转-热保护-堵转”死循环,电机烧毁只是时间问题。而大功率半封闭压缩机电机扭矩很大,局部磨损不会引起堵转,电机功率会在一定范围内随负荷而增大,从而引起更为严重的磨损,甚至引起咬缸(活塞卡在气缸内),连杆断裂等严重损坏。
堵转时的电流(堵转电流)大约是正常运行电流的4-8倍。电机启动瞬间,电流的峰值可接近或达到堵转电流。由于电阻放热量与电流的平方成正比,启动和堵转时的电流会使绕组迅速升温。热保护可以在堵转时保护电极,但一般不会有很快的响应,不能阻止频繁启动等引起的绕组温度变化。频繁启动和异常负荷,使绕组经受高温考验,会降低漆包线的绝缘性能。
此外,压缩气体所需负荷也会随压缩比增大和压差增大而增大。因此将高温压缩机用于低温,或将低温压缩机用于高温,都会影响电机负荷和散热,是不合适的,会缩短电极使用寿命。
绕组绝缘性能变差后,如果有其它因素(如金属屑构成导电回路,酸性润滑油等)配合,很容易引起短路而损坏。
2.金属屑引起的短路
绕组中夹杂的金属屑是短路和接地绝缘值低的罪魁祸首。压缩机运转时的正常振动,以及每次启动时绕组受电磁力作用而扭动,都会促使夹杂于绕组间的金属屑与绕组漆包线之间的相对运动和摩擦。棱角锐利的金属屑会划伤漆包线绝缘层,引起短路。
金属屑的来源包括施工时留下的铜管屑,焊渣,压缩机内部磨损和零部件损坏(比如阀片破碎)时掉下的金属屑等。对于全封闭压缩机(包括全封闭涡旋压缩机),这些金属屑或碎粒会落在绕组上。对于半封闭压缩机,有些颗粒会随气体和润滑油在系统中流动,后由于磁性聚集在绕组中;而有些金属屑(比如轴承磨损以及电机转子与定子磨损(扫膛)时产生的)会直接落在绕组上。绕组中聚集了金属屑后,发生短路只是一个时间问题。
需要特别提请注意的是双级压缩机。在双级压缩机中,回气以及正常的回油直接进入级(低压级)气缸,压缩后经中压管进入电机腔冷却绕组,然后和普通单级压缩机一样,进入第二级(高压级气缸)。回气中带有润滑油,已经使压缩过程如履薄冰,如果再有回液,级气缸的阀片很容易被打碎。碎阀片经中压管后可进入绕组。因此,双级压缩机比单级压缩机更容易出现金属屑引起的电机短路。
不幸的事情往往凑到一块,出问题的压缩机在开机分析时闻道的常常是润滑油的焦糊味。金属面严重磨损时温度是很高的,而润滑油在175?C以上时开始焦化。系统中如果有较多水分(真空抽得不理想,润滑油和制冷剂含水量大,负压回气管破裂后空气进入等),润滑油就可能出现酸性。酸性润滑油会腐蚀铜管和绕组绝缘层,一方面,它会引起镀铜现象;另一方面,这种含有铜原子的酸性润滑油的绝缘性能很差,为绕组短路提供了条件。
(2)——液击
1.引言
液态制冷剂和/或润滑油随气体吸入压缩机气缸时损坏吸气阀片的现象,以及进入气缸后没有在排气过程迅速排出,在活塞接近上止点时被压缩而产生的瞬间高液压的现象通常被称为液击。液击可以在很短时间内造成压缩受力件(如阀片、活塞、连杆、曲轴、活塞销等)的损坏,是往复式压缩机的致命杀手。减少或避免液体进入气缸就可以防止液击的发生,因此液击是完全可以避免的。
通常,液击现象可分为两个部分或过程。首先,当较多液态制冷剂、润滑油或者两者的混合物随吸气以较高速度进入压缩机气缸时,由于液体的冲击和不可压缩,会引起吸气阀片过度弯曲或断裂;其次,气缸中未及时蒸发和排出的液体受到活塞压缩时,瞬间内出现的巨大压力并造成受力件的变形和损坏。这些受力件包括吸排气阀片、阀板、阀板垫、活塞(顶部)、活塞销、连杆、曲轴、轴瓦等。
2.过程与现象
(1)吸气阀片断裂
压缩机是压缩气体的机器。通常,活塞每分钟压缩气体1450次(半封压缩机)或2900次(全封压缩机),即完成一次吸气或排气过程的时间为0.02秒甚至更短。阀板上的吸排气孔径的大小以及吸排气阀片的弹性与强度均是按照气体流动而设计的。从阀片受力角度讲,气体流动时产生的冲击力是比较均匀的。
液体的密度是气体的数十甚至数百倍,因而液体流动时的动量比气体大得多的,产生的冲击力也大得多。吸气中夹杂较多液滴进入气缸时的流动属于两相流。两相流在吸气阀片上产生的冲击不仅强度大而且频率高,就好像台风夹杂着鹅卵石敲打在玻璃窗上,其破坏性是不言而喻的。吸气阀片断裂是液击的典型特征和过程之一。
(2)连杆断裂
压缩行程的时间约0.02秒,而排气过程会更短暂。气缸中的液滴或液体必须在如此短的时间内从排气孔排出,速度和动量是很大的。排气阀片的情况与吸气阀片相同,不同之处在于排气阀片有限位板和弹簧片支撑,不容易折断。冲击严重时,限位板也会变形翘起。
如果液体没有及时蒸发和排出气缸,活塞接近上止点时会压缩液体,由于时间很短,这一压缩液体的过程好像是撞击,缸盖中也会传出金属敲击声。压缩液体是液击现象的另一部分或过程。
液击瞬间产生的高压具有很大的破环性,初人们熟悉的连杆弯曲甚至断裂外,其他压缩受力件(阀板、阀板垫、曲轴、活塞、活塞销等)也会有变形或损坏,但往往被忽视,或者与排汽压力过高混为一谈。检修压缩机时,人们会很容易发现弯曲或断裂的连杆,并给予替换,而忘记检查其他零件是否有变形或损坏,从而为以后的故障埋下祸根。
液击造成的连杆断裂不同于抱轴和活塞咬缸,是可以分辨出来的。首先,液击造成连杆弯曲或断裂是在短时间内发生的,连杆两端的活塞和曲轴运动自如,一般不会有严重磨损引起的抱轴或咬缸。尽管吸气阀片折断后,阀片碎屑偶尔也会引起活塞和气缸面严重划伤,但表面划伤与润滑失效引起磨损很不同。其次,液击引起的连杆断裂是由压力造成的,连杆和断茬有挤压特征。尽管活塞咬缸后的连杆断裂也有挤压可能,但前提是活塞必须卡死在气缸。抱轴后的连杆折断就更不同了,连杆大头和曲轴有严重磨损,造成折断的力属于剪切力,断茬也不一样。后,抱轴和咬缸前,电机会超负荷运转,电机发热严重,热保护器会动作。
(3)——缺油与润滑不足
1.引言
压缩机是高速运转的复杂机器,保证压缩机曲轴、轴承、连杆、活塞等运动件的充分润滑是维持机器正常运转的基本要求。为此,压缩机制造商要求使用指定牌号润滑油,并要求定期检查润滑油油位和颜色。然而,由于制冷系统设计、施工和维护方面的疏忽,压缩机缺油、油焦化变质、回液稀释、制冷剂冲刷、使用劣质润滑油等造成运动件润滑不足的情况比较常见。润滑不足会引起轴承面磨损或划伤,严重时会造成抱轴、活塞卡在气缸内以及由此而引起的连杆弯曲、断裂事故。
2.缺油
缺油是很容易辨别的压缩机故障之一,压缩机缺油时曲轴箱中油量很少甚至没有润滑油。
压缩机是一个特殊的气泵,大量制冷剂气体在被排出的同时也夹带走一小部分润滑油(称为奔油或跑油)。压缩机奔油是无法避免的,只是奔油速度有所不同。半封活塞式压缩机排气中大约有2-3%的润滑油,而涡旋压缩机为0.5-1%。对于一台排量为100m3/hr、曲轴箱储油量为6升的6缸压缩机,3%的奔油意味着大约0.3-0.8升排出压缩机的润滑油不回来,压缩机就会缺油。压缩机回油有两种方式,一种是油分离器回油,另一种是回气管回油。油分离器安装在压缩机排气管路上,一般能分离出50-95%的奔油,回油效果好,速度快,大大减少进入系统管路的油量,从而有效延长了无回油运转时间。管路特别长的冷库制冷系统、满液式制冰系统以及温度很低的冻干设备等,开机后十几分钟甚至几十分钟不回油或回油量非常少的情况并不稀奇,设计不好的系统会出现压缩机油压过低而停机的问题。这种制冷系统安装高效油分离器能大大延长压缩机无回油运转时间,使压缩机安全度过开机后无回油的危机阶段。
未被分离出来的润滑油将进入系统,随制冷剂在管内流动,形成油循环。润滑油进入蒸发器后,一方面因温度低溶解度小,一部分润滑油从制冷剂中分离出来;另一方面,温度低粘度大,分离出来的润滑油容易附着在管内壁上,流动比较困难。蒸发温度越低,回油越困难。这就要求蒸发管路设计和回气管路设计和施工必须有利于回油,常见的做法是采用下降式管路设计,并保证较大的气流速度。对于温度特别低的制冷系统,如-85°C和-150°C医用低温箱,除选用高效油分离器外,通常还添加特殊溶剂,防止润滑油堵毛细管和膨胀阀,并帮助回油。
实际应用中,由于蒸发器和回气管路设计不当引起的回油问题并不罕见。对于R22和R404A系统来说,满液式蒸发器的回油非常困难,系统回油管路设计必须非常小心。对于这样的系统,使用高效油分可以大大减小进入系统管路的油量,有效延长开机后回气管无回油时间。
当压缩机比蒸发器的位置高时,垂直回气管上的回油弯是必需的。回油弯要尽可能紧凑,以减小存油。回油弯之间的间距要合适,回油弯的数量比较多时,应该补充一些润滑油。
变负荷系统的回油管路也必须小心。当负荷减小时,回气速度会降低,速度太低不利于回油。为了保证低负荷下的回油,垂直的吸气管可以采用双立管。
压缩机频繁启动不利于回油。由于连续运转时间很短压缩机就停了,回气管内来不及形成稳定的高速气流,润滑油就只能留在管路内。回油少于奔油,压缩机就会缺油。运转时间越短,管线越长,系统越复杂,回油问题就越突出。对于没有油压安全开关的全封闭压缩机(包括涡旋压缩机和转子压缩机)和部分半封闭压缩机),频繁启动引起的损坏是比较多的。
压缩机维护同样重要。除霜时蒸发器温度升高,润滑油粘度减小,易于流动。除霜循环过后,制冷剂流速大,滞留的润滑油会集中返回压缩机。因此,除霜循环的频率以及每次持续的时间也需仔细设定,避免油位大幅度波动甚至油击。
制冷剂泄漏较多时回气速度会降低,速度太低会造成润滑油滞留在回气管路,不能快速返回压缩机。
润滑油回到压缩机壳体内并不等于回到曲轴箱。采用曲轴腔负压回油原理的压缩机,如果活塞因磨损等引起泄漏时,曲轴箱的压力上升,回油单向阀受压差作用而自动关闭,从回气管返回的润滑油就滞留在电机腔中,无法进入曲轴箱,这就是内回油问题,内回油问题同样会引起缺油。这种事故除发生于磨损的旧机器中,制冷剂迁移引发的带液启动也会造成内回油困难,但通常时间较短,多十几分钟。 出现内回油问题时,可以观察到压缩机油位不断下降,直至油压安全装置动作。压缩机停机后,曲轴箱的油位很快恢复。内回油问题的根源在于气缸泄漏,应及时更换磨损活塞组件。/分钟的奔油量,或压缩机无回油运转时间为十几分钟。
查看更多产品,请点击以下链接,或复制打开网址:
冷库门
冷库门图片
免费咨询热线:
{{item.AppContent}}